ar X iv : m at h / 04 09 48 5 v 1 [ m at h . D S ] 2 4 Se p 20 04 INVARIANT MANIFOLDS FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS
نویسندگان
چکیده
Annals of Probability 31(2003), 2109-2135. Invariant man-ifolds provide the geometric structures for describing and understanding dynamics of nonlinear systems. The theory of invariant manifolds for both finite and infinite dimensional autonomous deterministic systems, and for stochastic ordinary differential equations is relatively mature. In this paper, we present a unified theory of invariant manifolds for infinite dimensional random dy-namical systems generated by stochastic partial differential equations. We first introduce a random graph transform and a fixed point theorem for non-autonomous systems. Then we show the existence of generalized fixed points which give the desired invariant manifolds.
منابع مشابه
ar X iv : m at h / 01 04 17 8 v 1 [ m at h . N T ] 1 8 A pr 2 00 1 Arithmetic theory of q - difference equations
Part II. p-adic methods §3. Considerations on the differential case §4. Introduction to p-adic q-difference modules 4.1. p-adic estimates of q-binomials 4.2. The Gauss norm and the invariant χv(M) 4.3. q-analogue of the Dwork-Frobenius theorem §5. p-adic criteria for unipotent reduction 5.1. q-difference modules having unipotent reduction modulo ̟v 5.2. q-difference modules having unipotent redu...
متن کاملar X iv : m at h / 01 09 11 5 v 1 [ m at h . PR ] 1 8 Se p 20 01 Exponential Mixing Properties of Stochastic PDEs Through Asymptotic Coupling
We consider parabolic stochastic partial differential equations driven by white noise in time. We prove exponential convergence of the transition probabilities towards a unique invariant measure under suitable conditions. These conditions amount essentially to the fact that the equation transmits the noise to all its determining modes. Several examples are investigated, including some where the...
متن کاملar X iv : m at h / 02 04 17 2 v 2 [ m at h . A G ] 1 8 Se p 20 02 ON THE EQUATIONS DEFINING
Based on Nakajima’s Classification Theorem [N] we describe the precise form of the binomial equations which determine toric locally complete intersection (“l.c.i”) singularities.
متن کاملar X iv : m at h / 04 09 56 9 v 4 [ m at h . A G ] 1 7 Ju l 2 00 6 INTERMEDIATE MODULI SPACES OF STABLE MAPS
We describe the Chow ring with rational coefficients of M0,1(P , d) as the subring of invariants of a ring B(M0,1(P , d);Q), relative to the action of the group of symmetries Sd. We compute B(M0,1(P , d);Q) by following a sequence of intermediate spaces for M0,1(P , d).
متن کاملar X iv : m at h / 04 02 28 2 v 2 [ m at h . D G ] 5 A pr 2 00 4 COMPLETE CURVATURE HOMOGENEOUS PSEUDO - RIEMANNIAN MANIFOLDS
We exhibit 3 families of complete curvature homogeneous pseudo-Riemannian manifolds which are modeled on irreducible symmetric spaces and which are not locally homogeneous. All of the manifolds have nilpotent Jacobi operators; some of the manifolds are, in addition, Jordan Osserman and Jordan Ivanov-Petrova.
متن کامل